An iterative multigrid regularization method for Toeplitz discrete ill-posed problems

نویسنده

  • M. Donatelli
چکیده

Iterative regularization multigrid methods have been successful applied to signal/image deblurring problems. When zero-Dirichlet boundary conditions are imposed the deblurring has a Toeplitz structure and it is potentially full. A crucial task of a multilevel strategy is to preserve the Toeplitz structure at the coarse levels which can be exploited to obtain fast computations. The smoother has to be an iterative regularization method. The grid transfer operator should preserve the regularization property of the smoother. In this talk we improve the iterative multigrid method proposed in [1] introducing a wavelet soft-thresholding denoising post-smoother. Such postsmoother preserves the edges and avoids the noise amplification that is the cause of the semi-convergence of iterative regularization methods. The resulting iterative multigrid method stabilizes the iteration so that and imprecise (over) estimate of the stopping iteration does not have a deleterious effect on the computed solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Approach For Signal Restoration Problems With Toeplitz Matrices

We present a multilevel method for discrete ill-posed problems arising from the discretization of Fredholm integral equations of the first kind. In this method, we use the Haar wavelet transform to define restriction and prolongation operators within a multigrid-type iteration. The choice of the Haar wavelet operator has the advantage of preserving matrix structure, such as Toeplitz, between gr...

متن کامل

V-cycle convergence of some multigrid methods for ill-posed problems

For ill-posed linear operator equations we consider some V-cycle multigrid approaches, that, in the framework of Bramble, Pasciak, Wang, and Xu (1991), we prove to yield level independent contraction factor estimates. Consequently, we can incorporate these multigrid operators in a full multigrid method, that, together with a discrepancy principle, is shown to act as an iterative regularization ...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Regularizing Inverse Preconditioners for Symmetric Band Toeplitz Matrices

Image restoration is a widely studied discrete ill-posed problem. Among the many regularization methods used for treating the problem, iterative methods have been shown to be effective. In this paper, we consider the case of a blurring function defined by space invariant and band-limited PSF, modeled by a linear system that has a band block Toeplitz structure with band Toeplitz blocks. In order...

متن کامل

Tikhonov regularization based on generalized Krylov subspace methods

We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011